题目
Morenan被困在了一个迷宫里。迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T。可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点。这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点。若到不了终点,则步数视为无穷大。但你必须想方设法求出Morenan所走步数的期望值。
输入格式
第1行4个整数,N,M,S,T
第[2, M+1]行每行两个整数o1, o2,表示有一条从o1到o2的边。输出格式
一个浮点数,保留小数点3位,为步数的期望值。若期望值为无穷大,则输出"INF"。
输入样例
9 12 1 9
1 2 2 3 3 1 3 4 3 7 4 5 5 6 6 4 6 7 7 8 8 9 9 7输出样例
9.500
提示
测试点
N M [1, 6] <=10 <=100[7, 12] <=200 <=10000
[13, 20] <=10000 <=1000000
保证强连通分量的大小不超过100 另外,均匀分布着40%的数据,图中没有环,也没有自环题解
此题和游走那题有异曲同工之妙
我们设\(f[i]\)表示从\(i\)点出发到达终点的期望步数 就有\(f[i] = \frac{\sum (f[to] + 1)}{outde[i]}\)假若这是一个DAG图,反向dp就可以了
但是如果是一般有向图,我们进行缩点,先计算后面的强联通分量 同一个强联通分量之间,其式子的to要么是之后已经计算好了的点,要么就是强联通分量内部的点,可以用高斯消元解出判定时,只需要看S出发到达的所有点能否都到达T就可以了
写起来真要命
我丑陋杂乱的代码
#include#include #include #include #include #include #define eps 1e-8#define LL long long int#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)#define REP(i,n) for (int i = 1; i <= (n); i++)#define BUG(s,n) for (int i = 1; i <= (n); i++) cout< <<' '; puts("");using namespace std;const int maxn = 10005,maxm = 1000005,INF = 1000000000;inline int read(){ int out = 0,flag = 1; char c = getchar(); while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();} while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();} return out * flag;}int h[maxn],ne = 2;int h2[maxn],ne2 = 2;int h3[maxn],ne3 = 2;int n,m,S,T;int inde[maxn];double de[maxn];struct EDGE{int to,nxt;}ed[maxm],ed2[maxm],ed3[maxm];inline void build(int u,int v){ if (u == T) return; ed[ne] = (EDGE){v,h[u]}; h[u] = ne++; de[u] += 1; ed3[ne3] = (EDGE){u,h3[v]}; h3[v] = ne3++;}inline void add(int u,int v){ ed2[ne2] = (EDGE){v,h2[u]}; h2[u] = ne++;}int dfn[maxn],low[maxn],st[maxn],Scc[maxn],scci,top,cnt;vector scc[maxn];void dfs(int u){ dfn[u] = low[u] = ++cnt; st[++top] = u; Redge(u){ if (!dfn[to = ed[k].to]){ dfs(to); low[u] = min(low[u],low[to]); }else if (!Scc[to]) low[u] = min(low[u],dfn[to]); } if (low[u] == dfn[u]){ scci++; do{ Scc[st[top]] = scci; scc[scci].push_back(st[top]); }while (st[top--] != u); }}void tarjan(){ for (int i = 1; i <= n; i++) if (!dfn[i]) dfs(i);}void rebuild(){ for (int i = 1; i <= n; i++){ int u = Scc[i]; Redge(u) if (Scc[to = ed[k].to] != u) add(Scc[to],u); }}int vis[maxn];void dfs1(int u){ vis[u] = 1; Redge(u) if (!vis[to = ed[k].to]) dfs1(to);}void dfs2(int u){ vis[u] += 2; for (int k = h3[u],to; k; k = ed3[k].nxt) if (vis[to = ed3[k].to] <= 1) dfs2(to);}bool check(){ dfs1(S); dfs2(T); for (int i = 1; i <= n; i++) if (vis[i] == 1) return false; return true;}double f[maxn];double A[205][205];int id[maxn],c[maxn];void gause(int u){ int cnt = scc[u].size(); for (int i = 1; i <= cnt; i++){ c[i] = scc[u][i - 1]; id[c[i]] = i; } for (int i = 1; i <= cnt + 1; i++) for (int j = 1; j <= cnt + 1; j++) if (i != j) A[i][j] = 0; else A[i][j] = 1; for (int i = 1; i <= cnt; i++){ Redge(c[i]){ to = ed[k].to; if (Scc[to] != u) A[i][cnt + 1] += (f[to] + 1) / de[c[i]]; else A[i][id[to]] -= 1 / de[c[i]],A[i][cnt + 1] += 1 / de[c[i]]; } } for (int i = 1; i <= cnt; i++){ int j = i; while (j <= cnt && fabs(A[j][i]) <= eps) j++; if (j == cnt + 1){ puts("INF"); exit(0); } if (j != i) for (int k = 1; k <= cnt + 1; k++) swap(A[i][k],A[j][k]); for (int j = i + 1; j <= cnt; j++){ if (fabs(A[j][i]) > eps){ double t = A[j][i]; for (int k = i; k <= cnt + 1; k++) A[j][k] = A[j][k] / t * A[i][i]; for (int k = i; k <= cnt + 1; k++) A[j][k] -= A[i][k]; } } } for (int i = cnt; i; i--){ for (int j = i + 1; j <= cnt; j++) A[i][cnt + 1] -= A[i][j] * f[c[j]]; if (fabs(A[i][i]) <= eps){ puts("INF"); exit(0); } A[i][cnt + 1] /= A[i][i]; f[c[i]] = A[i][cnt + 1]; }}void solve(){ for (int i = 1; i <= scci; i++) gause(i); printf("%.3lf\n",f[S]);}int main(){ n = read(); m = read(); S = read(); T = read(); int a,b; while (m--){ a = read(); b = read(); build(a,b); } if (!check()){ puts("INF"); return 0; } tarjan(); rebuild(); solve(); return 0;}